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Abstract— In January 2015 the NASA Goddard Space Flight 

Center (GSFC) released the core Flight System (cFS) as open 

source under the National Aeronautics and Space 

Administration (NASA) Open Source Agreement (NOSA) 

license. The cFS is based on flight software (FSW) developed 

for 12 spacecraft spanning nearly two decades of effort and it 

can provide about a third of the FSW functionality for a low-

earth orbiting scientific spacecraft. The cFS is a FSW 

framework that is portable, configurable, and extendable using 

a product line deployment model. However, the components 

are maintained separately so the user must configure, 

integrate, and deploy them as a cohesive functional system. 

This can be very challenging especially for organizations such 

as universities with minimal FSW development experience that 

are building CubeSats. This paper describes the OpenSatKit[2] 

that was developed to address the cFS deployment challenges 

and to serve as a cFS training platform for new users. 

 

OpenSatKit provides a fully functional out-of-the box software 

system that includes NASA’s cFS, Ball Aerospace’s command 

and control system COSMOS, and a NASA dynamic simulator 

called 42.  The kit is freely available since all of the components 

have been released as open source. The kit runs on a Linux 

platform, includes eight cFS applications, several kit-specific 

applications, and built in demos illustrating how to use key 

application features. It also includes the software necessary to 

port the cFS to a Raspberry Pi and instructions for configuring 

COSMOS to communicate with the target. All of the demos 

and test scripts can be rerun unchanged with the cFS running 

on the Raspberry Pi. 

 

OpenSatKit can serve two significant architectural roles that 

will further help the adoption of the cFS and help create a 

community of users that can share assets. First, the kit is being 

enhanced to automate the integration of applications with the 

goal of creating a virtual cFS ‘App Store’. Second, a platform 

certification test suite can be developed that would allow users 

to verify the port of the cFS to a new platform. This paper will 

describe the current state of these efforts and future plans. 
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1. INTRODUCTION 

The NASA Goddard Space Flight Center (GSFC) released 

its Core Flight System (cFS) as open source in 2015[1]. The 

cFS is a very mature and highly reliable FSW framework 

that is being used on several operational NASA Class B 

missions. This paper describes the cFS architecture and how 

the cFS platform abstraction and application components are 

independently configuration managed. It also describes how 

the cFS’s open architecture requires either an end user or a 

distributor to configure and integrate the components into an 

operational system. 

OpenSatKit[2] is presented as a freely available open source 

solution to the cFS integration and deployment problem. 

The kit includes eight preconfigured cFS applications and 

provides tools for creating and integrating additional 

applications. Starting with an operational flight-ground 

system makes the FSW developer’s job much easier. 

Developers can focus on tailoring the kit’s cFS components 

to their needs, adding new mission-specific applications, 

porting the cFS to their target platform, and verifying the 

system. 

 

2. CORE FLIGHT SYSTEM 

This section provides an overview of core Flight System 

and describes architectural highlights, its open architecture, 

and the product model. 

Overview 

The core Flight System[1] (cFS) is a reusable flight software 

(FSW) framework developed by the NASA Goddard Space 

Flight Center’s (GSFC) Flight Software Systems Branch 

(FSSB) over the past 15 years. The cFS was developed 

because previous GSFC FSW reuse efforts had limited 

success in reducing cost and schedules. Early reuse efforts 

used a “clone and own” approach where a new project 

would copy FSW components from one or more previous 

missions based on functional requirement similarities. This 

informal source-code based approach to reuse proved 

difficult for managers to control the scope of the changes 

and as a result, a comprehensive verification and validation 

effort had to be performed for the new mission which 

severely limited the cost savings. In addition, since FSW 

components were not configuration managed independent of 

projects, component quality did not necessarily increase 
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because a single lineage for each component was not 

maintained. 

To meet these challenges the FSSB formed a team of senior 

engineers to perform a structured heritage analysis across a 

decade of missions. The initial funding was from non-

mission sources which allowed the engineers to participate 

uninhibited by near-term mission schedules. The diversity 

of the heritage missions (single string vs. redundant string, 

varying orbits, different operational communication 

scenarios, etc.) provided valuable insights into what drove 

FSW commonality and variability across different missions. 

The team took the entire FSW life-cycle into consideration, 

including in-orbit FSW sustaining engineering, as they 

performed their analysis. The team identified system and 

application level variation points to address the range and 

scope of the flight systems domain. The goal was to enable 

portability across embedded computing platforms and to 

implement different end-user functional needs without the 

need to modify the source code.  

The cFS uses compile-time configuration parameters to 

implement the variation points. Figure 1 below shows the 

results using a classic software engineering “V-model”. The 

shaded components are cFS artifacts and the <p> notation 

indicates a parameterized artifact.  

 

Figure 1. The cFS-Based Project FSW Lifecycle 

This lifecycle product line approach dramatically increased 

the number of reusable artifacts and changed how future 

missions would approach their FSW development efforts. 

Architectural Highlights 

While a majority of the heritage analysis focused on FSW 

functional features a significant and conscious effort was 

made to address the cFS’s architectural quality attributes[3]. 

Quality attributes are hard to quantitatively trade but they 

can ultimately determine the success or failure of a software 

product line. The prominent quality attributes balanced by 

the cFS include portability, performance, reusability, 

usability, scalability, interoperability, verifiability, 

complexity, and predictability.  

Design Decisions—Design meetings, trade studies, and 

code reviews were used to create a consistent architectural 

quality attribute balance. Two key trade studies were 

performed to determine whether to support file systems and 

whether to support both static and dynamic linking.  

 

Figure 2. The cFS Layered Architecture 

At the time of the cFS formulation these were difficult trade 

studies because to date no GSFC missions had flown a file 

system and dynamic linking wasn’t supported by all of the 

operating systems being considered by new missions. The 

results of the trade studies were to include file system 

support and to support both static and dynamic linking. 

These decision have proven to be vital to the cFS’s 

reusability, usability, and interoperability which has been 

very beneficial to the ever-expanding user base. 

API-Based Layers—Two additional pivotal cFS 

architectural features are the Application Program Interface 

(API)-based layers and the definition of an application as a 

distinct well-defined architectural component. Figure 2 

above illustrates the three distinct layers and identifies 

which components have been released as open source. 

Layer 1 contains the Operating System (OS) and Board 

Support Package (BSP) and access to the functionality in 

these components is controlled through two APIs: the 

Operating System Abstraction Layer (OSAL[3]) and the 

Platform Support Package (PSP).  

The OSAL and PSP APIs provide a platform independent 

(OS and hardware) interface that provides common OS and 

BSP services. The Platform Abstraction Layer has been very 

successful in decoupling the higher layers from hardware 

and OS implementation details allowing the cFE and 

applications to be run unchanged on a wide range of 

platforms.  

Layer 2 contains the core Flight Executive (cFE) that 

provides five services that were determined to be common 

across most FSW projects. The APIs in Layers 1 and 2 have 

been instrumental in the cFS’s success across multiple 
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platforms and the cFE API has remained functionally 

unchanged since the launch of the Lunar Reconnaissance 

Orbiter in 2009. Together the APIs define an application 

runtime environment for the applications[3] in Layer 3. The 

application layer contains thread-based applications as well 

as libraries (e.g. linear algebra math library) which can be 

shared among multiple applications. 

Application as a Plugin—The second pivotal architectural 

feature is the definition of an application as a plug-in 

component. The cFE enables this feature by providing a 

core set of services, a runtime environment, and a tool suite 

for building and hosting flight software applications.  

Core Services—The core services include a Software Bus 

(messaging), Time Management, Event Messages (alerts), 

Table Management (runtime parameters), and Executive 

Services (startup and runtime). The Software Bus provides a 

publish-and-subscribe Consultative Committee for Space 

Data Systems (CCSDS)[6] standards-based inter-application 

messaging system that supports single and multi-processor 

configurations. Time Management provides time services 

for applications.  

The Event Message service allows applications to send 

time-stamped parameterized text messages. Four message 

classes based on severity are defined and filtering can be 

applied on a per-message and per-class basis.  

cFS Tables are binary files containing groups of application 

defined parameters that can be changed during runtime. The 

Table service provides a ground interface for loading and 

dumping application tables.  

Runtime Environment—Executive Services provide the 

runtime environment that allows applications to be managed 

as an architectural component. All of the services contain 

tunable compile-time parameters allowing developers to 

scale the cFE to their needs. The cFS manages non-volatile 

storage using a file system and it uses a script file to 

determine which application object files should be loaded 

during initialization. In turn applications subscribe to cFE 

services during their initialization.  

On-Orbit Maintenance—Since cFE resources are managed 

on a per-application basis the cFE supports starting, 

stopping, and loading individual applications during 

runtime. This allows applications to be developed 

independent of the platform, very similar to how apps are 

managed by smart phones. It can also simplify on-orbit 

maintenance as demonstrated by the Global Precipitation 

Measurement (GPM) FSW sustaining engineering team in 

the fall of 2014 when they successfully replaced the file 

transfer application without disrupting normal science 

operations. 

Open Architecture 

The cFS is an open architecture that defines a framework 

with a product line deployment model. Separately 

configuration managed components are integrated into an 

operational system.  

Configured Items—Working up the layers in Figure 2, the 

configured items are the OSAL, the cFE, and each 

application. PSPs are developed for specific hardware-OS 

platforms and are currently bundled with the cFE. 

Configuration parameters are tuned on a per-component 

basis as well as for the integrated system.  

Table 1 below provides metrics for the cFS as it is being 

used on GSFC’s GPM mission that launched on February 

27, 2014. These metrics are representative of the current 

versions of the cFS components. They have only undergone 

minor updates since the final build of GPM, so they provide 

a good reference point for future missions.  

Table 1. GPM cFE/Application Metrics 

cFE/ 

App 

Logical 

Lines of Code 

Configuration 

Parameters 

cFE 12,930 General: 17 

Executive Service: 46 

Event Service: 5 

Software Bus: 29 

Table Service: 10 

Time Service: 32 

CFDP 8,559 33 

Checksum 2,873 15 

Data Storage 2,429 27 

File Manager 1,853 22 

Health & Safety 1,531 45 

Housekeeping 575 8 

Limit Checker 2,074 13 

Memory Dwell 1,035 8 

Memory Manager 1,958 25 

Scheduler 1,164 19 

Stored Command 

(124 command 
sequences) 

2,314 26 

 

Configuration Parameters—A configuration parameter is 

defined with either a mission scope or a processor scope. 

For example, the maximum length of an event message is 

defined at the mission level and the “include local event 

log” is defined at the processor level.  

The metrics in Table 1 above are provided to give a general 

sense of the level of tenability. It’s hard to gauge the 

configuration complexity with simply a number because the 

parameters span a large functional range from a simple 

default file name to a system behavioral definition like the 

time client/ server configurations.  
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Figure 3. The cFS Product Model 

 

Product Model 

The cFS has successfully demonstrated many of the initial 

architectural quality attributes, but usability which in turns 

impacts reusability has been challenging. NASA does not 

maintain a component library with a standard deployment 

model where users can select, tune, and integrate 

components into an operational system. A private company 

such as Apple that controls the hardware and software 

platform for apps in a very large ecosystem can create a 

viable market place. Government organizations operate 

under different financial models and legal constraints 

therefore a centralized government controlled library is not 

feasible. The cFS situation is actually more complex than 

Apple’s because the cFS framework supports an expanding 

number of platform abstractions as well as apps. As new 

Platform Abstraction Layers are created, who should certify 

them and maintain them? Similar questions need to be 

answered regarding apps. 

The cFS has evolved from a NASA Goddard vertically 

integrated platform[1] to an open source ecosystem[4] 

resulting in the cFS product model shown in Figure 3 above. 

The NASA multi-Center Configuration Control Board 

(CCB) controls the cFS Framework that contains the 

Platform Abstraction Layer APIs, a limited set of 

implementations of those APIs, the cFE, test applications, 

build tools, and specifications for developing OSALs, PSPs, 

and applications. The CCB could be thought of as an API 

standards board with reference implementations. 

Independent of the CCB, NASA has established catalogs of 

cFS components and distributors[5]. NASA does not vet the 

suppliers listed in the catalogs. Distributors combine the 

cFS Framework with additional cFS components to create 

functional systems. OpenSatKit serves as a cFS distribution. 

 

3. OPENSATKIT 

This section provides an overview of OpenSatKit, and 

describes cFS application management and system 

integration and verification. 

Overview 

OpenSatKit provides a fully functioning flight-ground 

system running on Ubuntu Linux 16.04 LTS[2]. Currently 

the installation script only supports Ubuntu Linux, but the 

kit is designed to run on other Linux platforms. The starter 

kit components are shown in Figure 4 below. Ball 

Aerospace’s COSMOS[6], a user interface for command and 

control of embedded systems, is used as the ground system. 

The cFS running on Linux provides a desktop FSW 

component. The 42 Simulator[7] provides a simulation of 

spacecraft attitude and orbit dynamics and control. All of 

these components are freely available as open source 

software. 

 

Figure 4. Starter Kit Block Diagram 
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Launching OpenSatKit—OpenSatKit is started by launching 

COSMOS from the cfs-kit/cosmos directory. A customized 

COSMOS Launcher Graphical User Interface (GUI) 

appears. The customized launcher is the standard COSMOS 

Launcher with the addition of a cFS Starter Kit button as 

shown in Figure 5 below.  

 

Figure 5. Custom COSMOS Launcher 

When the user selects the cFS Starter Kit icon, COSMOS’ 

Command and Telemetry Server and Telemetry Viewer 

tools launch, as they are required by the kit. The OpenSatKit 

main page shown in Figure 6 below also opens. 

 

Figure 6. Starter Kit Main Page 

 

GUI—The main page layout reflects the primary goals of 

the kit: provide a complete cFS system to simplify the cFS 

learning curve, simplify application development and 

integration into a cFS system, and assist in porting the cFS 

to a new platform. The main page has two tabs: Home and 

Demo. The Home tab provides buttons to perform all of the 

kit’s functions. The Demo tab provides preconfigured 

demonstrations for most of the Home tab’s functions. 

Home—The Home tab is divided into four sections: (1) 

System, (2) cFS-Functions, (3) Kit-Tools, and (4) Event 

Messages. The System section allows the user to start the 

cFS and perform some simple system level operations to 

ensure that the system is functioning properly. Each button 

in the cFS-Functions section opens a command and 

telemetry page that allows the user to focus on a particular 

cFS functional activity that requires one or more apps. For 

example, the File Management page (Figure 7 below) is 

used to manage onboard directories/files using the File 

Manager (FM) app and transfer files between COSMOS and 

the cFS using the Trivial File Transfer Protocol (TFTP) app.  
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Figure 7. File Management Page 

Built-In Demos—The Demo tab contains a demo for each of 

these functional areas. The cFS-Function pages and 

corresponding demos help users conquer the cFS learning 

curve. In addition, the page definitions and underlying Ruby 

scripts provide examples that users can build upon for their 

mission-specific applications. 

Kit-Tools—The Kit-Tools section provides tools that assist 

the user with verifying a platform, evaluation a platform’s 

performance, integrating additional applications to the kit, 

and porting the cFS to a new target. The current kit includes 

a Raspberry Pi target. 

cFS Application Management 

The application layer is where the majority of the cFS 

scalability and extendibility occurs. Users create new 

mission FSW by partly or completely reusing existing cFS 

compliant apps and combining them with apps that are 

developed specifically for the mission. Just as the cFE 

provides common FSW services, there is a set of apps that 

provide common higher level functional services. Figure 8 

below shows the minimal context for a user app on a single 

processor system. The Scheduler (SCH), Command Ingest 

(CI), and Telemetry Output (TO) apps provide the higher 

level services. 

 

Figure 8. User Application Context 

Apps must have the ability to receive commands from and 

send telemetry to the ground system. The Command Ingest 

app receives commands from the ground and sends them on 

the software bus. The software bus uses the command 

message identifier to route the command to the app that has 

subscribed to the message id. An app also generates one or 

more telemetry packets and sends them on the software bus. 

The Telemetry Output app uses a table to determine which 

message IDs to subscribe to and how often to forward them 

to the ground system. 

Scheduler App—Users have multiple mechanisms for 

controlling the execution of an application. The Scheduler 

app (SCH) provides a time-synchronized mechanism for 

scheduling application activities. The Scheduler app uses a 

table to define time slots to schedule the sending of a 

message that users can use to initiate an activity. Activities 

can be scheduled to occur faster or slower than every 

second. Even if an app’s execution is data driven (.i.e. pends 

for one or more data packets to start its execution) it is often 

convenient to use the scheduler as a control mechanism for 

scheduling the sending of time-based “housekeeping” 

telemetry. 

Kit Apps—The service apps in Figure 3 above are identified 

as “kit” apps because they have been specifically designed 

for the kit. The kit apps use text files for tables which 

simplify the automation of integrating a new app into the 

kit. The kit scheduler has not been qualified for flight, so a 

user must transition from the kit SCH to the cFS SCH app. 

The cFS only provides the CI_LAB and TO_LAB apps, 

which are also not flight qualified. Therefore, the kit apps 

do not create additional work since every user must develop 

their own CI and TO apps. 

Application Generation Tool—OpenSatKit provides an 

application generation tool that creates a “hello world” app. 

In addition to the FSW source code the tool generates an 

initial unit test; an initial build test; a COSMOS command 

definition file for the no operation and reset app commands; 

a COSMOS housekeeping telemetry definition file; and an 

installation script.  

Automating App Kit Integration—All of the metadata 

required to integrate an app into the kit has been identified. 

If app suppliers can supply this data in a standard format 
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then the process of integrating an application into the kit 

could be automated. 

An effort is underway that will accomplish this automation 

goal. The CCSDS Spacecraft Onboard Interfaces Services 

(SOIS) Electronic Data Sheet (EDS) defines a layered 

description of a hardware or software component interface 

in a machine-readable format[8]. EDS provides a standard 

exchange mechanism for device and software interface 

definitions. The cFS team is incorporating EDS developer 

tools and specifications into the cFS Framework and 

component specifications. Once this is complete the logistic 

of implementing a distributed “app store” and automated 

application integration into OpenSatKit can be 

implemented. 

System Integration and Verification 

OpenSatKit provides multiple levels of support for verifying 

the initial installation of the kit, adding applications, and 

deploying the cFS to a target platform. The “Verify cFS 

Config” button on the home page runs a test script that 

verifies all of the preconfigured OpenSatKit apps are 

integrated into the system. The script is designed using 

COSMOS’s Test Runner framework so new applications 

can easily be added and removed. This same script can be 

run after the cFS is ported to a new platform to verify all of 

the apps are still running as expected. 

Test Suite Framework—An application functional test suite 

framework is also included with the kit. This test suite also 

uses COSMOS’ Test Runner framework. These tests are 

intended to verify the functional requirements for each 

application. The cFS functional tests have not been 

translated to run within the COSMOS Ruby scripting 

environment. 

4. FUTURE WORK 

After the NASA cFS team integrates EDS into the cFS tool 

chain and artifacts, an application metadata model can be 

defined. This definition should be maintained by the NASA 

cFS CCB in order to maintain a cFS standard. Once the 

application EDS model is defined OpenSatKit can be 

updated to support automated application integration. 

There are multiple efforts that could be done to improve the 

verification and validation processes associated with porting 

the cFS to a target platform. First, the kit currently includes 

a benchmark app. The goal of this app is to allow a user to 

run a consistent benchmark test suite on different targets. 

The benchmark app is a prototype and needs to be matured. 

Second, a platform test app can be written that would verify 

the platform abstraction is functioning properly. Third, the 

cFS functional tests should be translated to run within the 

kit’s functional test suite framework. 

 

5. SUMMARY 

This paper described the cFS architecture and how the cFS 

platform abstraction and application components are 

independently configuration managed. The cFS open 

architecture model requires either an end user or a 

distributor to configure and integrate the components into an 

operational system. The cFS is a very mature and highly 

reliable FSW system that has been used on several NASA 

Class B missions[5]. It would therefore be quite beneficial to 

the aerospace community to make the cFS more accessible. 

OpenSatKit was presented as a freely available open source 

solution to this problem. It includes eight preconfigured cFS 

applications and provides tools for creating and integrating 

additional applications,  
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